Targeting mutant p53 for cancer therapy

نویسندگان

  • Moshe Oren
  • Perry Tal
  • Varda Rotter
چکیده

p53 tumor suppressor protein serves as a major barrier against cancer; consequently, mutations in the TP53 gene, encoding p53, are the most frequent single genetic alteration in human cancer, occurring in about half of all individual cancer cases [1]. Besides abrogating the tumor suppressive effects of the wild type (WT) p53 protein, many of the TP53 mutations endow the mutant p53 protein with new oncogenic gain-of-function activities, which actively promote a variety of features characteristic of aggressive tumors, such as increased migratory and invasive capacities and increased resistance to many types of anti-cancer therapy agents [1]. This pertains particularly to tumors that carry single amino acid substitutions (missense mutations) within p53's DNA binding domain (DBD), and display abundant accumulation of the mutant p53 protein within the tumor cells [1]. In tumors that retain non-mutated TP53 genes, the tumor suppressive effects of the remaining WTp53 are also often compromised, owing to genetic and epigenetic alterations that occur during cancer progression [1]. Altogether, the normal functionality of p53 is thus abrogated in the vast majority of human tumors. This realization has led to extensive attempts to restore full p53 functionality in cancer cells, as a novel cancer therapy strategy [1, 2]. However, these attempts have been seriously hampered by the fact that p53 has no known enzymatic activities, and rather operates primarily as a sequence-specific transcription factor. Furthermore, restoring the activity of a defective tumor suppressor protein is vastly more difficult than abrogating the activity of a hyperactive oncoprotein. Nevertheless, significant advances have been achieved in recent years, and hopes for the introduction of p53-based novel cancer therapies into the clinic are becoming increasingly supported by evidence. In principle, attempts to develop such therapies have taken 3 main approaches: (1) Introduction of WTp53, mainly via viral transduction (" gene therapy "), into tumors that have sustained TP53 mutations; (2) enhancement of the functionality of the endogenous WTp53 in tumors that have retained a non-mutated TP53 gene, mainly be disrupting the interaction of the WTp53 protein with its major negative regulator MDM2; and (3) " correction " of the mutant p53 protein in tumors that have sustained Editorial TP53 missense mutations, thereby restoring its ability to perform the tumor suppressive activities of WTp53 [1, 2]. The latter approach, namely the " re-education " of mutant p53, is particularly appealing. First of all, it can simultaneously reinstate WTp53 tumor suppressive activity together with abrogating …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wild Type p53 Gene Transfer Increases Chemosensitivity and Apoptotic Response of PANC-1 Pancreatic Tumor Cell Line

The effect of p53 gene therapy on chemosensitivity and apoptotic response of PANC-1 tumor cells, which express high amount of mutant p53, to cancer chemotherapeutic agents of Etoposide and Doxorubicin was investigated. Comparison of the chemosensitivity of PANC-1 cells to its wild type p53 transfectants showed that wt-p53 expressing transfectants are more sensitive to both Etoposide and Doxorub...

متن کامل

Targeting Oncogenic Mutant p53 for Cancer Therapy

Among genetic alterations in human cancers, mutations in the tumor suppressor p53 gene are the most common, occurring in over 50% of human cancers. The majority of p53 mutations are missense mutations and result in the accumulation of dysfunctional p53 protein in tumors. These mutants frequently have oncogenic gain-of-function activities and exacerbate malignant properties of cancer cells, such...

متن کامل

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Small-Molecule NSC59984 Restores p53 Pathway Signaling and Antitumor Effects against Colorectal Cancer via p73 Activation and Degradation of Mutant p53.

The tumor-suppressor p53 prevents cancer development via initiating cell-cycle arrest, cell death, repair, or antiangiogenesis processes. Over 50% of human cancers harbor cancer-causing mutant p53. p53 mutations not only abrogate its tumor-suppressor function, but also endow mutant p53 with a gain of function (GOF), creating a proto-oncogene that contributes to tumorigenesis, tumor progression,...

متن کامل

مطالعه اثر ضد سرطانی پروبیوتیک‌ها بر میزان پروتئین جهش یافته p53 در رده سلولی K562

Background : Probiotics are defined as different microorganisms that may have positive effects on preventing or treatment of special pathologic conditions. Lactobacillus casei and L. paracasei as probiotics could induce the apoptosis in human cancer cells in vitro. Chronic myeloid leukemia is categorized as a blood cells cancer and the most common type of leukemia. The expression of mutant p53 ...

متن کامل

Targeting of Mutant p53 and the Cellular Redox Balance by APR-246 as a Strategy for Efficient Cancer Therapy

TP53 is the most frequently mutated gene in cancer. The p53 protein activates transcription of genes that promote cell cycle arrest or apoptosis, or regulate cell metabolism, and other processes. Missense mutations in TP53 abolish specific DNA binding of p53 and allow evasion of apoptosis and accelerated tumor progression. Mutant p53 often accumulates at high levels in tumor cells. Pharmacologi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016